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Abstract- This paper describes the 1OATA-
CHASER Automated Planner/Scheduler
(1OXCAPS)system for automatically generating,
low-level command sequences from iz, h-level
uscr goals. 1 YCAPS usces artificial intel ligence
(A1) based scarch techniques and an iterative
repair framcworkin which the system
sclectivel y resol ves conflicts with the resource
and temporal  constraints of the. 1 JATA-
CHASER shuttle payload activities.
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. INYRODUCTION

Command scquence generation for spacecrafl
()l)cmli(ms can beca laborious Process requiring
a great deal of specialized  knowledge.
Command scts can be  large, with  cach
command performing a low-level trek, T'here
may be  many interactions  between  the
commands QU ¢ 1o the use o f  resources. In
addition, ducto power and weight limitations,
the resources available on-board spacecraft tend
to be scarce. Because of this complexity, tools
to assist in planning and scheduling spacecralt
activitics are critical to reducing the cost and
¢ ffortof mission operations.
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This paper describes a general system that uses
Artificial Intelligence Planning and Scheduling
technology to automatically generate command
sequences for the DATA-CHIASI R shuttle
payload operations.  The DATA-CE IASER
Automated Planncr/Scheduler (DCAPS)
architecture  presented — supports  (lirect,
interactive  commanding,  rescheduling  and
repair,  resource  allocation, and  constraint
maintenance.

The 1CAPS scarch algorithm was developed
basedon the “iterati verepai r* technique used in
[ 14]. Basically, this technique iteratively  selects
a schedule conflict and performs sorne action in
anatlempt to resolve the conflict. Using a
tepair algorithm, DCAPS is naturally well -
adapted for human interaction. Therefor, the
scheduler can be used as a tool to assist
payload command sequencing. With the use  of
this tool, scquencing becomes simiple enough
to be accomplished by non spacecraft and
sequencing  expertls, suchas the mission
scientists. This allows the scientist to become
dircetly involved inthe command scquencing
process. Following any changes in spacecrafl
state or user-defined goals, the. repair algorithin
allows simple, non-disraptive reschedul ing.
Finally, the highly restrictive payload resources
and constraints arc consistently monitored and
conflicts avoided automatically.

The DCAPS system is being developed for
operation o f the DATA-CHASHIR  shutde
payload which is being managed by students
and faculty of the University of Colorado at
Boulder.  DATA-CHASER i s a science




payload, with a primary focus on solar
observation. The main activitics for the payload
involve science instrament observations, data
storage, communication, and control of the
power subsystem. Science is performed using
three  solar  observing  instruments,  Far
Ultraviolet Spectrometer (FARUS), Soft X-
ray/Lixtreme  Ultraviolet Iixperiment (SXELL),
and Lyman-Alpha Solar Imaging Telescope
(ILASIT), that arc imaging devices al various
spectra. The payload resources include power,
tapc  storage, local memory, the three
instruments, and the communication  bus,
DATA-CHHASER is  also  constrained by
externally-driven  states such as  the  shuttle
oricntation - which affects when certain scienee
activitics can be scheduled. Payload activitics
must be sequenced while avoiding or resolving
conflicts  with  resources  and  temporal
constraints.

When using the DCAPS system, there are three
modes of operation. Iirst, by simply providing
a small set  of high-level science  and
cngincering goals, an initial schedule can be
generated. The goals, which describe  high-

level mission  objectives, are  automatically
franslated  into a  sequence  of  exccutable
activitics.  The sccond  phase  offers  an
interactive  scheduling  session.  Using  the

repair-based scheduler, the user can work with
the  Jow-level activities  while  maintaining
consistency  with resources and  constraints.
After making any change in the schedule, the
user can give one simple command to resolve
all conflicts in the current schedule. A schedule
free. of conflicts, however, may not be the
highest quality schedule. In the final stage, the
user can call on the optimizer to rate the
schedule to scarch for a better solution.

r

I'nc main  scheduling  algorithm — of  the
plammer/scheduler is the repair-based  scarch
algorithm. Using this algorithm, the scheduler
first collects all of the conflicts in the current
schedule and classifies them based on the
resource being violated and the culprit activities
associated with the conflict. After choosing a
conflict 1o repair, the scheduler must seleet an
action to perform in an attempt to resolve the
conflict. Actions include moving, adding, and
deleting activities. 1 the action resolves the
conflict, the scheduler iterates on the resulting,
schedule. Otherwise, the scheduler tries a

different action for resolving the persistent
conflict.

The remainder of this paper is organized as
follows.  First  we  describe  the  DATA-
CHASER  shutde  payload  and  mission
objectives. Next we discuss the different ways
in which the DCAPS system can be used to
command the DATA-CHASER payload. We
then go into detail about the DCAPS approach
to automated command generation. Next we
describe the model representation. Then we
describe how DCAPS fits in to the overall
flight and ground system architecture for the
DATA-CIHASER mission. Finally we discuss
related work and conclusions.

2. DATA-CHASER PAY1LOAD

DATA-CHASER consists of (two synergetic
projects (sce lig. 1), DATA and CHASER,
which will fly as a Hitchhiker payload aboard
STS-85 on the International Txtreme ultraviolet
Hitchhiker Bridge (1EH-2) in July 1997 |3]. A
technology experiment, DATA  (Distribution
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Figure 1: DATA-CHASER payload

and  Automation T'echnology  Advancement)
secks 1o advance semi-autonomous,
supervisory operations. CHASHR  (Colorado
Hitchhiker and Student Experiment of Solar
Radiation) is a solar science experiment  that
serves 1o test DATA. The DATA technologics
supporl  cooperative  operations  distributed
between different geographic sites as well as

between  humans  and  machines,  on-board
autonomy, human control, and ground
automation.

CHASER is comprised of three co-aligned
mstruments that take data in the far and extreme




Ultra-violet wave.-lengths. ‘The first and oldest
of thescinstruments (17 yecars old) is 1 'ARUS
or the 1 ‘AR Ultraviolet Spectrometer, which
takes a continuous spectrum from 115 nm to
190 nm with a resolution of .12 nm. LLASIT
(Lyman-Alpha Solar Imaging *J clc.scope.) takes
images of the full solar disk of the suninthe

Iyman- ¢ wavelength (121.6 nm) with a ClI1)
imager. The final instrament in the scientific
package consists of 4 photomelters, cach having
a differentmetallic coating s() as to enable them
(o 1ook” atdifferentwavelengths between 1 and
40 run. The objective of  these instruments is o
measure the full disk solarultrav ioletirradiance

and obtain images of the sun in the Lyman-¢
wavcelength, providing a corrclation between
solar activity and radiation flux as well as an
association of 1 .yman-o fluxes with individual
active regions of the sun.

The flightsegment o1 the. 1 JATA-CITASHR
project consists of a canister that is equipped
with a 1 litchhiker Motorized Door Assembly
(I IMI>A) which houses the instrumentsand
their support clectronics. The sccond canister
contains the flight computer for the payload as
wellas the 2 GB Digital Audio Tape (1JAT)
drive thatis used to store all data that is
collected during the mission. The payloads data
is also sent to the ground system through both
low rate (available 90% of the time,@ 1200~
bps) and medium r at e (available when
scheduled, @ 200" kbps). The payload is also
capable o f recei ving commands sent from the
ground system when uplink is available.

During the mission, the DATA-CHASER
payload will be operating in four diffcrent
modes. Most of the time D ATA-CIHASER is
powered it will be in a passive mode where it is
monitorin g its state and notifying the ground of
any changes. During the time inthe mission
whenthe orbiter is scheduled to point the bay
at the sun,the D ATA-CHASER payload will
shiftinto solar active mode where cach of the
instruments takes data. That data is both writlen
1o the DA'T drive on board and downlinked to
the groundsystem for immediate data analysis.
Sceveral times  during  the mission, DATA-
C HASER will lake data whilenot pointing, at
the sun. This data is used for testing various
portions o f the DATA cxperiment with non-

solar point ing data in addition to being used for
stroment calibration.

One of the consequences of flying on the
shuttie system is that shutle resources are
limited and their availability is subject to change
¢ very 12 hours. T'hese resources include aceess
to u plink and downlink channels, and time that
your payload is allowed to operate. In addition
to thicse resources, any given payload may also
have environmental constraints as to how mu ch
contamination the payload can take.. Another
cxample i s thermal constraints, such a s
maximum solar point time.

SI'S 85, the flight that D ATA-CHASLR
payload is scheduledto fly on, is onc of the
most compl icated flights that the shuttle has
flown to date. In addition to DATA-CIHASER
payload, there are 4 other payloads sharing the
same H H bridge. In addition, the 1F1-2 bridge
there is another 11H bridge, a pallet payload,
and a Spartan deployable satellite, Needless (o
say the shuttle  pointing requirements  are
considerably tight. In addition t o modcling
what the internal constrai nts and resources o f
the payload are, DCAPS must also scarch the
shutde  flight plan for times when we are
allowed tooperate, downlink our data, uplink
ncw command set s, and when we have 1o
protect CHASER  science  instruments  from
conlamination cvents,

DATA-CHASER is aninteresting scenario for
scheduling because of the complex data and
power management involved in the science
gathering. A nautomated scheduler must find
an optimal “data taking” schedule, while
adhering  t o the resource constrai nts. 1l
addition, the scicntists would like to perform
dynamic scheduling during the mission. As an
example, the summary data may indicate the
presence of a solar flare. 1f this o cours,
scientists have different requirem cents  and
poals, s u ¢ h as higher prioritics on certain
istrument s or lo nger integration times. '} hese
new goals may require a different sch edule of
activitics.

3. USER OPERATION

1he DATA-CHASER Automated
Planner/Sclheduler will be part of the 1ATA-
CITAST iR mi ssion operations software. 1t will




be a ground-based intelligent tool used for
generating scheduled commands for uplink to
the payload. The user’s manual can be found at
[9]. “1"here. arc three phascs of operating the
1 OCAPS system: a goal satisfaction phase, an
inter active repair phase, and an optimization
phasc.

3.1G OAL SATISFACTION

The first phase? o f scheduling in DCAPS
involves generating an initial schedule from a
set of high-level, user-defined goals. The
scientist or engincer siiply requests one or
more of the goals, and the scheduler will
generate the low-level activitics that satisfy the
goals. For example., the scientist can simply
make a request for solar observations during all
solar viewing periods. Given this request, the
scheduler will create and position the
instrament  data-take  activities  and  their
supporling activitics.

Goal satisfaction is a way of gencrating an
initial schedule. Goals are parameterized, and
creale activitics in positions relative 10 certain
schedule events o1 parameters. Inthi s way, the
same goalscanbe requested for different 1 nitial
states. This makes them more flexible than
alternate ways creating an initial schedule, such
as simply loading activitics from afile. 1 ‘or
example, the initial state in DATA-CIHASER
contains  shuttle mancuver activities. These
activities determine the solar viewing periods of
the payload. The solar obscrvation requests are
based relative to these solar views, and
therefore, arc applicable to any mancuver
scgquence.

3.2 INTHRACTHION R EPAIR

in the. sccond phasc of scheduling, the user has
the opportunity for interacting w i t h the
schedule at amore detavled level. The scientist
or cngincer can view the aclivities a several
levels of abstraction. The GUI can display
activities from the highes  level, as a single
cvent, down to the lowest level, showing the
detailed steps that make.- up the activity.

The user can al so modify the schedule by
moving, adding, or deleting activitics, as wc] |
as changing activity parameiers. ] ‘or example,
the scientistmight want to delete a 1LASIT data-
take and replace it with a F ARUS or SXEL

(Jata-take,. (h, perhapshe/she may simply want
to change the tal’get of somc data-take, from a
solar scan to an carth scan. Although the user
has the capability of” makinglhcsc types O f
adju stment s, he/sh e does not need to wont y
about the various interactions, constraints, or
resource usage of the activitics being modified.
This information is monitored by DCAPS, and
changes arc  propagated 1o the dependent
objects. In addition, when the user introduces
scheduling conflicts, 1 YCAPS can resolve them
automatically.

1 YCAPS can be called uponatany time (0
resolve any conflicts residing, inthe schedule.
Conflicts are violations of resource capacities
or temporal constraints. In this way, the user
docs not need to be very informed, careful, or
specific about his/her requests. For example, a
scientistcan move a (I:th-lake activity without
concern for i’s power usage. or, a gencral
request for (M d-takes can be made, without
specifying the exact times for the activities to
occur, Although these. changes or requests may
causc onc or more conflicts, 1YCAPS can
1¢solve these conflicts with one  simple
command.

3.3O1"TIMIZATION

1 ‘inally, the third phase of DCAPS operationis
schedule  optimization.  After  resolving — all
conflicts, the schedule may still contain
violations of user preferences. These violations
canbeexpressed as “soft conflicts” and can be
repaired in a manner similar to repairing regular
conflicts.  The main difference i s that the
modeler  must explicitly represent “soft
conflicts” and general mechanisms for  repairing
them. As anecxample, considered an engineer’s
desire to have all dots writlento permanent
storage at the. end of the mission, Having data
inthe RAM at the end of the schedule is not a
violation o f the resource, but could be
considered a“soft conflict>’.

1 ’references can also be expressedina schedule
cvaluation function. Inthe optimization phase,
I X IAPS can score valid schedules based on the
evaluation function developed by the mmodceler.
1’1 s evaluationfunction canbeused (o produce
more optimal valid schedules. One  simple
evaluation function may give higher scores to
schedules with more science observations.




1 )CAPS can find more optimal schedules by
running the automatedscheduler many times
and remembering the. schedule with highest
SCoIC.

4. Autor nated PLANNER/SCHEDULER

The D ATA-CHASER Automated
Planner/Sclyeduler produces a complete, valid
schedule of payload operation commands from
a model, initial state., and set of high-lcevel
goals. In addition, it can input intermediate,
invalid schedules (resulting from user changes)
and produce a similar, butvalid schedule.
Finally, the. scheduler can lake several valid
schedules, score them, and select the most
optimal schedule.

'The planner/sch eduler consists of t w o main
parts, the Plan-1T 11 (1'1?) sequencing tool [5]
and the schedule reasoner (sec. lig. 2). P12 was
written  py  William C. Eggemeyer and
orig inally designed as an “expert resistant
sequencing tool.’” 1717 includes a Graphical
User 11)tcl’ face. (GUI) that allows for casy
manipulation of’ the schedule. In addition, i
serves  as an activity/resource data-base that
supplies valuable. information to the schedule
reasoner. 1'12 supports complex monitoring,
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an dreasoninge about activities and the. various
constraints  between  them. The  schedule
rcasoncr  uscs  Artificial Intelligence (Al)
techniques  to  automatically  gencrate new
schedules, repair existing Taulty schedules, and

optimize  valid schedules. P12 provides
information about resource availability and
conflicts, while. the scheduler must decide
which activitics to usc to resolve the conflicts
and where to place the activitics temporally.
The two components work together to provide
casy and fast sequencing of mission activities.

4.1 Scirpur i DATA-BASE

In the DCAPS system, P12 is used primarily as
a“schedule (Intarbase” andresource constraint
checker. Itwas originally (Jc.vclo]lk x1 as a
graphical sequencing, tool. Activities and
resources arc displayed on a graphical output.
An activity represents some mission event that
occurs over aperiod of time and uses some of
the mission resources. A resources represents
some limited available material whose usage is
modeled as discrete blocks over time. lor cach
type of activity and resource, 1'12 displays a
timeline, which represents the behavior of that
activity/resource type over a period of time.
When activitics are created, they are placed ata
specified time on the timeline. Resources used
by that activity arc updated to reflect the
additional usage. i n addition to schedule
visualization, P12 provides an casy-to-usc input
interface for modifying the schedule. Moving
aclivities is as simple as a click-and-drag with a
nmouse.

P12 helps case the bitrdc11 onscquencers by
continually monitoring all activities in the
sequence. As activities are added or moved, the
change in resource usage i s automatically
updated, and the ncw resource profiles are
displayed. With this in formation avail able, the
user canimmediately see the cffects of a
schedule change on the mission resources. Tor
each recsource, P12 also monitors any conflicts
that arc 0cCuIT ne on the resource. Conflicts are
time intervals where the limitations of the
resource have been cxceeded. These conflict
intervals arc highlighted in red to flag there
cxistence for easy identification. Finally, 1'12
monitors any dependencies that have been
defined between @CUVIU cg and resources. The
values of specific parameters of activitics and
resources may be functionally dependent on
Values of other parameters. 112 automatically
keeps these. parameter values consistent.




1'12 also helps out by serving as an activity and
resource data-basc, producing/acceptin?,
information  to/from a scquencer.  The
functional interface 10112 has been extended to
betler assist an automated sequencer. A basic
setof “feteh” functions have been developed to
quickly retricve information about conflicts and
the resources and activities involved in t h e
conflict. 1 ‘or example, aninterface function has
been written to fetch the legal times where an
activity can occur in the. schedule. 1 lere, “legal
times’ refers to positions where no conflicts are
caused by any Of theresources used by the
given activity.

In addition to fetching information droll the
current stale. of the schedule, the user willneed
to beable to change the current state in attempt
10 fixor optimize the schedule. Some  basic
prit nitive functions arc provided by PI2 to
allow an external system to add and move
activities, change there duration, ete. These
primitives make up the set of actions that a
scheduler can tak e when trying to resolve
conflicts.

4 .2 SCcHEDULE IRREASONER

The second major component of DCAPS is the
automated schedule reasoner. This is the next
step in automating  and  simplifying  the
spacec raflt command sequencing process. There
arc three parts to the schedule reasoner:  a
schedule generator, a schedule repairer, and a
schedule  optimizer.  First,  the  scheduole
gencrator will transform a set of user-(icfinc(i
high-level goals into a valid sequence of Jow-
level commands. Second, the schedule repairer
will automatically maintain the consistency of
the sequence after arbitrary user interaction by
rescheduling  using  repair  actions.  The
scheduler repairer iteratively attempts to resolve
cach conflict, which involves making choices
on what to repair, and how t o repair it. Finally,
the schedule optimizer can optimize a valid
schedule to increase science return.

Sc hedule Generator

The first Step in sequencing  spacecrafl
commands is to comec up with an initial
schedule o f cvents for cach phase of the
mission.  ‘his process has been  partially
automated in DCAPS  with  the schedule
gencrator. Lixpressing  schedules and  partial

schedules to be gen crated is done through user
defined goals. There are two waysin which
user goals are handled in DCAPS. First, initial
science and enginecering goal s are addres sed
with parameterized scheduling functions. Fach
functions implements a goal. For cexample,
there is  a “Place-Power”  function  that
schedules power switching activities in
app ropriate plain based onsome eng incering,
parameters. Parameters may include s u ¢ h
things as a minimum time between switching
or a power (m during a particular state of a
different resource. Second, science goals can
also be expressed through data-take requ est s,
whichdo not have to be a part Of the initial
schedule generation. For example, a scientist
can request ten  additional scans  from  a
particular instrument to occur any time during
some phase of the mission. This type of
general  request does not include specific
locations or nccessary supporting activitics.
The scheduler will simply place them at random
positions and allow any conflicts to be resolved
by thcautomated repairer.

Schedule Repairer

The generated initial schedulemay still violate
some of the spacecrafl constraints. Also, the
scientists and engineers might feel there goals
were not completel y satisfied, and may needto
interact - Withand  modify the  gencrated
schedule. In doing this,new conflicts may be
imtroduced. Therefor, we need some way O f
automatically resolving any existing conflicts in
the schedule, while (disrupting the currentstate
of the schedule as little as possible. Having the
p rocess automated allows the user to be less
careful, and therefor spend less time. on the
details of sequencing the activitics. When
general requests 017 changes have been made,
all conflicts canbe resolve.(i by cxccuting one
simple command t o invoke the schedule
repalrer.

Before describing the schedule repairer, we
must present a few  definitions. A “hard
conflict”, or just “conflict”, is a violation of one
of the resource constraints. A conflict occurs
over a certain time period and is caused by
activitics called “culprits”. YTor example, if the
power capacity is exceeded from time t, to time
1,, then there is a conflict from time t, to time 1,
and the culprits are any activitics that use power
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(turing this time (see Tig. 3). A “soft conflict”
is aviolationof onc of the user’s high lewd
goals. Hard conflicts arc violations” of legal
constraints, while. “soft conflicts’ arc violations
of userpreferences. “Choice points” are places
in the scheduling algorithm when a decision
must be made. Tor example, when there are
many conflicts 1o resolve, the scheduler must
decide which conflict to resolve first. A “hard
choice”, or just “choice”, is a dccision made
solely on the basis of possible hard conflicts. It
may be decided, for example, not to place an
activity at a certain time bc.cause. new conflicts
will be added as aresult of that placement. A
“soft choice” is a decision made onthe basis of
user preferences or a heuristics with the hopes
of gencrating a more optimal schedule. An
cxample of a user preferenceis a priority
scheme o01) certain activities. One heuristic may
be tomove 1owest priority culprits 10 the
ncaresticgal position.

There are four possible actions to take in
atlemptto resolve. a conflict: move, add, or
delete an activity. The “move.” action involves
moving (me. of the culprits of the conflict to &
positions that will either resolve the conflict, or
at Jeast insure that the. moved activity is no
longer a culprit. Some. conflicts can be resolved
by adding a new activity. These activities
usually provide some  resource  that  was
previously not available. Finally, a conflict can
also be resolved by simply deleting the culprits.
This is obviously not a preferred method and is
Only uscdasalastresort.

The resolution of a conflict greatly depends on
the type of resource that isin violation. There
are five diffc.rent types of resources, and
therefor, five different types of conflicts to
resolve.. A conflict on a depletable resource
means that the activitics of the schedule have
used too much of the resource. Inthis type of

conflict, the culprit is the activity that ca used
the resource to overflow”  during the time that it
first overflows. Some depletable  resources
have “resetter” activities and this sort of conflict
cary be resolved by adding an activity that
“resets” the available resource. For example, a
downlink activity will free up spare in the
downlink buffer. A conflict ona non-depletable
resource is when activitics o\’ c.ruse a resource
during a particular time interval, The culprits in
this type of conflictare all of the activities that
use the resource during the conflict interval.
This sort of conflict can be resolved by moving,
or deleting culprits. There are no activities in
the DATA-CHASER model that can add to a
non-depletable resource. A conflict on a state
resource 1s when  an activity requires  the
resourcetobeina state which it is not. The
culprits in this type of conflictarc all of the
activitics that require. the incorrect Wile. and the
activity that changed t he. resource to the
incorrect  state.  Several possibilities f or
resolving a state conflict include moving the
culprits to another interval where the required
state is present, or adding an activity that will
change the state of the resource to the required
state. A conflict on a concurrency resource s
when an activity requi res the presence of the
resource, Which is usually provided by the
another activity. The culpritsin this type of
conflictarc an of the activitics that require the
presence o fothe resource. To resolve  a
concurrency conflict, the scheduler can move
the culprits to an interval where the resource is
present, or add an activity that provides the
presence of the resource. Anti-Concurrency
conflicts arc essentially the same except they
require the absence of the resource rather than
the presence of it.

Forany type. of’ initia schedule, the schedule
repairer must find the correct activities 1o move,
add, or delete and position” them temporally in
such a way thatno conflicts remain. The
scheduler is based on a random scheduler with
several heuristics uscdat the various choice
points. The scheduler relies (m some interface
functions to 1'12 that describe the conflicts in
the current schedule, describe the activities that
could resolve a conflict, and manipulate the
schedule. We o first describe  the  random
scheduler, followed by  the.  hcuristic
cnhancements that facilitate scheduling within
the DATA-CHASER domain. The ultimate task



lterative Repair Algorithm

The following is the algorithm for the schedule repairer writienin a C-like  pscdo-code.”

Resolve-Conflicts ()

{
iterations = 1
conflicts GoetConflicts()
loop while

conflict =
woet hod ChooscMethod{(conflict)

(method) {

‘move’
culprit -
duration -
start-time -

casoe

success s

‘add’
acltivity =
duration =
start-time =
SUCCOSS

‘delete!

(Jength{conflicts) > 0 && iterations <:
ChoosceConflict (conflicts)

max- iterations) {

ChooseCulpritToMove (conflict)
Choosehuration{conflict,

culprit)

ChooseStartTime (conflict,culprit,duration)
MoveCulprit (conflict,culprit, start-time)

ChoosceActivityToAdd (conilictl)
Choosehuration(conflict,

activity)

ChooscStartTime (conflict ,activity,duration)
AddActivity(conflict,activity,start- time)

culprit = ChooseCulpritTobelete(conflict)

sueceess
J
pProgross GotProgreoess ()
if not (success && progress)
Got.Conflicts ()
Jterations 4 1

conflicts
iterations

} .

of thesystem is to findthebest prace to
schedule the activities so as to maximize the

utility of the schedule. In the basic random
scheduler, all choices are made randomly from
the listof options unless otherwise specified.
The algorithmisasimple iterative. loop over the
conflicts in the schedule. First, a conflict is
sclected from the list of current conflicts. An
atlempt is madce toresolve the  chose.n conflict.
Next, amcthod for resolving the conflict is
chosen. The repair action will depend (m which
method has been selected. If “move” is chosen,
thena culprit must be picked from the list of
culprits in the conflict. A duration and start time
arc chosen for the. culprit, and the culprit is
moved to the new lo cation. | f “add” is the
chosen method, then the repairer must decide
which activity type to instantiate. Again, a
duration and start time must be chosen for the
new activity, and the activity is inserled at the
chosen time. If the repairer chooses 1o “delete”

DeleteCulprit (conflict,culprit)

then UndolastAction ()

an activity, then it simply must choosc an
activity to delete, and delete it. Afler the chosen
action is performed, the schedule repaiter
clinks toscc if progress was made. If the
action did not succeed in resolving, the conflict,
or progress was not made, then the action s
“undone”. Otherwise, the ncw setof conflicts
are found, and the loop counter is incremented.
This process continues until al conflicts are
resolved , 01 the loop counter exceeds a user
defined maximum bound. 1 ‘or every choice
point in the algorithm, where a sclection must
be made froma list of possibilitics, the
schiedule repairer is al lewd to “backtrack” to
that point. What lbis means is, that if a
particular choice fails, it may choose another
from the list before giving up. If all choices
fail, then a previous decision must have been
incorrect, and the repairer can “back (rack” to
the preceding choice point. All choice points,
including the decision on whether or not to



backtrack, arec heuristic decisions, and may
customized to a particular domain.,

Schiedule Optim izer

There are three ways 1o optimize a schedule:
using preference heuristics at scare.h choice
points, specifying, a set of “soft conflicts”, or
by simply scoring results from multiple. runs of
the scheduler. A preference heuristic, 017 “soft
choice”, canbe made at any dcecisionin the
repair scarch. 1 for example, when decid i ng
where 1o move. a conflict causing activity, the.
user might prefer to move that activity to a
position close.st to it's current position. This
will help the. scheduler avoid unnecessary
disruption to the existing schedule. The
existing schedule, afterall, may have. been
produced by the user in anattemptto optimize
the schedule.

1 ’re ferences can be expressed using what we
referred to as “soft conflicts”. A soft conflict is
a way of specifying a preferred val ue for a
particular rcsource, possibly at a particular
time. 1 ‘or cxample, having any scanned data
that has not been stored on the tape at the end
of the mission, is considered a soft conflict,
The scientist would prefer that all of the data be
writlen to the tape at the missions end, rather
than leaving, itin the on-board memory. Afler
the. schedule repairer handles all of the “hard
conflicts”, itcontinues by iteratively addressing
al of the “soft conflicts™.

The third approach to optimization involves
scoring  several  resulting  schedules and
choosing the onc with the highest score. The
cvaluation function is domain dependent, and
would have to be written separately for cach
application. 1 lowcever, some basic scoring will
be similar across applications. 1 ‘or example,
most science spacecraft are mainly concerned
with colleet the 1z wgest number Of images as
possible. A simple evaluation would give a
higher score to schedules with greater amounts
of collected dat a, Once we have the cvaluation
function, we need to be able to produce several
(lirfc.rent schedules from the same goals and
initial stale. This can be (1l one by cither
changing t h e hecuristics, or running the
sc]eduler with a different random sced. Some
heuoristics may work betier than others, and it is
often difficultto tell which is the best for a

particular application. ‘1 ‘hercefore, it may be
necessary 1o resort to empirical tests. Afler
running the scheduler on different heuristics,
wc can simply choose the set of heuristics
which generates the schedule with the highest
Score.  Afler  choosing  the heuristics, the
schedulercanberun many times with diflcrent
randomsceds. At choice points where there. is
no heuristic for choosing from the list of
possibilitics, the scheduler makes a random
decision. Withdifferent random seeds, these
decisions will be different, and the resulting
schedule will be different. Using the evaluation
function, we can assign a score to cach, and
choose the schedule with the highest score.
‘This procedure will not necessarily uncover the
optimum schedule, butit will help find a more
optimal schedule.

Heuristics

‘1 he general  scarch  and  decision  making
described above. would be futile without expert
supportand guidance. 1 leuristics have been
developed and i ncorporated into 1 YCAPS to
help guide the. scarch to a validand more
optimal schedule. This guidance knowledge
comes f r o m both domain experts and
scheduling experts. ‘1 ‘here are three basic
classes of heuristics used inDC APS: selection,
pruning, andbacktracking heuristics.

Sclection heuristics involve deterministical 1y
sorting or selecting from alist of possibilitics at
a choice pointin the search, The selection is
usually based on some property Of the objects
being considered. For example, when  choosing
a culprit to move in order to resolve a pow cr
conflict, one heuristic might choose the culprit
thatuses the most amount of power. Using this
heuristic might resolve the conflict faster.
Another successful heuristic used in DCAPS
was one that sorted the possible locations for
act ivity placement by the. number of conflicts
the activity would cause when placed in that
location. ‘his basic approach has been referred
{0 as the “min-conflicts” heuristic |7]. Fhe min-
conflicts algorithm we usc is interesting and
worth going into detail.

I *or cach resource used by an activity, we
query the (i at a-basc for thic Iegal times where
the activity can be placed without violating the
resource constraint. *Jhen, cachlegalinterval is
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Figure 4. Min-conflicts with scored interval interscction

assigned an initial score of onc. Next, we
interseet two sets of intervals that resulted from
two of the resources, using a special “scored”
interval intersection (see Fig. 4). The scored
intersection of intervals A and B results in four
possibilitics: an interval with a score of A for
positions where A cxists and B docs not, an
interval with a score of B where B exists and A
docs not, an interval with a score of A plus the
score of B where the two intervals intersect, or
no interval where neither A nor B exist. The
result of this intersection is then intersected
with the third set of intervals. This continucs
until cach set of intervals for cach resource has
been intersected. The result 1s a set of scored
intervals, where the score represents  the
number of resources that will not be violated if
the activity is placed in that position. Using
these intervals we can choose a position with
the highest score, in other words, the position
with the fewest conflicts.

Another class of heuristics used in DCAPS arc
the pruning heuristics. These heuristics remove
some of the possibilities for a given selection in
attempt to make the choice casier and faster.
I'or example, after finding the scored intervals
for an activity, we may not want to try all
possible positions. One possibility 1s to only
try positions with the highest score, or lecast
number of conflicts. This may speed up
scheduling because the scheduler will only try a
few positions before realizing this attempt is
futile and giving up to try something different.
However, too much pruning may remove
possibilitics that could be useful. In the above
example, some of the pruned intervals may
have included positions that, if the activity was
placed there, would have improved the
schedule. A more conservative approach might
be to prune only those intervals that would

cause more conflicts than are currently in the
schedule. These intervals cannot possibly be
positions that could improve the schedule.

Finally, backtracking heuristics are used to help
determine when (o continue working on the
same problem and when to move on 1o a
different problem. At cach choice point, we
have a list of possibilities. 1f we try one
possibility, and it fails, we can continue and try
the next possibility, or move on to a different
choice point. Heuristics can be used to help
make  two  types ol decisions  about
backtracking: deciding on “action failures” and
deciding on “selection failures”. First, the
notion of an “action failure” is not clear and
requires an approximate definition. Success is
not simply resolving the chosen  conflict.
When, resolving a conflict, and action attempt
may fix the chosen conflict, but cause several
other conflicts. Therefore, success can be
thought of as improving the schedule. But how
much? And what defines an improvement? Qur
current  definition  of  progress  includes
observing the change in the number of
conflicts, the change in the number of culprits,
and the change in the duration of the conflicts.
Checking the progress of an action can be used
as a heuristic for determining whether to accept
the action, or try a different onc. The second
opportunity for heuristics comes when deciding
il there is a “selection failure”. While trying,
and failing on, a list of possibilitics for a choice
point, at some point we must decide that the
previous choice was a failure. Heuristics can
help with this decision also.

5. MoDI. REPRESENTATION

In order to use cither Plan-I'T" 11 stand-alone or
the full DCAPS system, the user must write a
software model of the mission activities and
spaceeraft resources. This involves defining a
set of objects and how they interact. These
definitions arc then used by the scheduler to
create instances of the objects.

5 Mobrt. OBlECIS

The basic objects in the P12 sequencing tool are
activitics, resources, slots, and dependencices.

Activities



Activitics arc used to model the events that
happen  that  affect the DATA-CI TASE iR
payload, and the actions that the DATA-
CHASER payload can take. All activitics have
some. basic components: a duration, alist of
slots, and alistof slol-value assignments. In
addition, ccrtaintypes (described below) have a
list of sub-activitics. For the.sc activitics, the
user can als o definc asct of temporal
constraints between the sub-activitics. Next,
we describein more detail the four basic types
of activitics: events, steps, step-activitics, and
activitics.

Fivents are used to model activitics that do not
occur in a fixed relation to other activitics (like
TDRSS contacts) and are not part of an activity
hicrarchy.

Steps arc the “hi” nodes in the aclivity
hicrarchy tree. In other words, they d o not
contain any sub-activitics. Steps cannot be
instantiated without their parents andarcused
to mode] the activities atthe lowest level of
detail.  For instance, we model an activity
called CITASER-heating, which consists of
two steps, CH ASER-heater-on and CITASER-
heater-off.

Step-activities are used to model activitics at a
middle level of abstraction. They can contain
steps, but must also have parent activitics. In
DCAPS, we model an activity SXEE-T data-
Take, which models the SXLE instrument
opening iUs aperture and taking a scan. In this
case, there is a step-activity called SXEE-Scan-
Step, which has sensor recad steps and can not
be instantiated by itself.

Activitics are used (o model activities al the
highestlevel of abstraction, They are the “root”
nodes in the hierarchy tree, containing sub-
activitics, but no parent activity. The activity
and cvent objects are what the scheduler can
instantiate, and Plan-1t I provides methods to
access the. varying levels of abstraction.

Resources

R esources define  the  various  physical
resources and the constraints they impose.
Resources come in essentially four varietics:
state, concurrency, depletable, non- depletable,
and smple..

Stateresourcesarcusedto 111(XICL thesysteins
inthc DATA-CHASLHR payload which have
states associated with them. 1 ‘or cach state
resource, the modeler must specify the possible
values that the state canbe. Most of the
systems have atlcastone state variable, which
is whether or not they arc activated. The
oricntation of the payload is aso modeled with
a state variable which is discretized into four
Slates (solar, lunar, cal'[ii, deep space.).

Concurrency resource const raints are used to
maodel rules that stipulate that an activity cither
must occeur with another activity or can not
occur with another activity. Once relationship
that is modcled with a concurrency resource is
the requirement that a downlink or uplink can
onl y occur during contact with a Tl JRSS
satellite. This is modeled as a resource that is
present when there is TDRSS contact activity,
and required when there is a downlink or
uplink activity.

1 epletable resources are usedto mod el
resources with a fixced quantity, such a fuel or
RAM, Activitics can List some. finitc amount of
adepletable resource, which may or may not be
restorable. The amount used by the activity is
persistent to t h e end of the schedule. In
addition, the modcler must specify amaximum
capacity for cachdepletable resource.  1In
IYC APS, RA M is modeled as a depletable
resource.. Scicnee observations produce data
and use some amount O f  the depletable
resource. Other activitics, such as a transfer to
permancnt storage, may restore this resource.

Non-depletable resources are used t o model
resources which have a limit to the usage at any
onc time, butare reset atthe end of the activity
which consumes the resource. Similar 10
depletable  resources,  non-depletables  iire
assigned a maximum capacity. Resources like
p ower arc modeled with  non-depletable
resources.

Simple resources are used to model devices
which can only be used by onc activity at a
time. For instance, cach of the instruments on
board DATA-CHASER, FARUS, SXIi}, and
LLASI'T, are capable of taking only one image at
atime, and are modeled with simple resources.




Simple resources are essentially non-depletable
resources with an capacity of  (me.

Slots

Slots are paramet ers of activities that allow
them to affect resources. They are defined
separately, but referenced inside activity
definitions along with a value assignment for
cach slot. Inthe slot definition, the modeler
must specily which resource it affects. The
main types of slots arc: info stots, simple slots,
availability siots, choice siots, amount silots,
and slate slots.

Info slots are for embed ding text information in
activitics. They are mercly placcholders and (10
not have any cffect on scheduling.

Simple slots arc included in activity ty pe
definitions in order to model usage of asimple
resource. For instance, there is a st1ot called
FARUS w h i ¢ h is included in activity
definitions of activities which use the FARUS
instrament. ‘Ibis is how usage. of the I' ARUS
instrument is modeled.

Availability slots arcthe slots that allow
activities t O provide orrequire the presence of a
concurrency  resource. There s a slot in
1 ICAPS cal led TDRSS-coverage and a slot
called ‘1’1 XRSS coverage-nee ded. Bot h affect
the ‘1DRSS-coverage  resource.  11)1<ss
activitics have the TIRSS-coverage slot, and
downlink activitics have the. TIDRSS-coverage-
needed slot. TDRSS activities can be placed
anywhere, andprovide the presence of the
resource. 1Jownlinks can only be placed in
intervals where TDRSS activities arc. present,
since this activity posscsses the slot which
requires the ‘1 1 ORSS rc.source ta be present.

Amount slots come intwo varieties: amount
and reset-amount.  Amount slots reduce a
depletable 0 1 non-depletable resource, and
rescet-amount slots increase a depletable or non-
depletable resource. Amount slots do not have
1o be associated with a resource, however. In
1YC APS, wc. have an amount slot called Rate,
which is how we model t h e different bit
transfer rates inactivities that move data, Such
asa down inks or AT reads and writes, To
find the amount of data an activity transfers, we
multiply the rate by the duration of the activity.

There are also two types of state slots: state-
users and  state-changers.  state-uscl” slots
require t he presence of a cerlain state in a state
resource, and state-changer s1ots change the
slale o f a state resource. The modeler must
define the set of possible states. In1)CAPS,
there 18 a state resource that models the shutlle
orientation, which can be solar, ecarth, lunar, or
deep-space. Solar science activities require the.
shuttle orientation State to be solar, While
shuttle:  mancuver  activitics  change  the
oricntation state,,

Dependenicies

Plan-1t11 provides the. abilityto set uplinksthat
i low onc object 10 affectanother object. ‘1 'hese
links arc called dependencics. ‘1 here arc several
1 y] »es of dependencies based ont het ypes of
objects it relates: dlot to rc.source, slot to slot,
slot toactivity startor durati oil, activity startor
duration to sl ot, and resource to resou ree
dependencices.

Slot to resource dependencics are the default
dependencics in the Plan-It 1 1 system. They
al low a slot to affect a resource, and are created
automatically when a stot is defined with the
SAINE NAIC as a Iesource.

Slotto dot dependencics alow the value of one
slot to affect the value of another slot, 1 or
instance, in the 1 JAT-transfer activity, there arc
two slots, onc that models the removal of dita
fromthe RA M, find one thatmodcels the
addition of data to the DA'I (digital tape). In
DCAPS, a dependency has been defined that
sets the value of one of the slots cqual to the
value of the o111(v” slot (so that the amount
subtracted from RAM is never different than
the data added to the. DA'T).

Activity start time or duration to slot
dependencics and slot to activity start time or
duration dependencies facilitate the modeling of
convenient relationships among  Plan-1t 1]
objects. For instance, the DA’ T-transfer has a
slot called Rate, which is the rate at which data
canbe moved from the RAM to the D AT. We
have a dependency which sets the amount of
data thatis removed from the RAM equa to the
rate multiplied by the duration. Ancxample of a
dependency which goes from dlot to durationis



adependency which links the selected target for
ascience image to the length of time it takes for
t he inst rument to scan. The durat ion of a
1 ‘ARUS scan varies depending on it’'s use of
the shuttle orientation state (solar, carth, or
lunar).

Resou ree to resource dependencics allow one
resource to affect anot her resource (10 rect ly.
This is very convenient for modeling power
usage, since power consumption can be tied to
activities or stale.s. For instance, power
consumption by the heater can be linked to an
activity (c.g.the activation of the heater), or to
astate of the heater (¢. g. When the Stale, of the
heater is “m”, more power is use(l).

5.2. HiERARCHY

The modeler can create an activilty hicrarchy
when deflining the activities. All this mcans is
that activitics can have sub-activitics which can
also have sub-activities, and so on. Only the
activity at the. top of the hicrarchy can be
instantiated in the schedule. Whenan activity is
created, all of iC’s sub-activit ies are created
automatically. Therefore, the scheduler must
schedule the entire hicrarchy if it wants to
schedule one of the. components.

In modeling the. DATA-CHASH R shuttle
payload, decisions had to bc made about where
to pul activitics in the activity hicrarchy. We
decided 1o model those activities which could
be scheduled arbitrarity (andhad no sub-
activitics) as ecvents not in a hicrarchy. Some
activities that were modceled as cvents were
TDRSS contacts, shuttle venting, and  VEry
stmple  activitics  which (X)111(1 occur
independently, 1§ k e relay activations  and
11 M DA operations (opening and closing).

I f one cvent alwavs occurred in some  fixed
ten aporal relat jonship to another, then we
modeled it as an activity in a hierarchy. For
instance, a SX Lilidata take consists of a
numbecr of calibrations, a4 door openingactivity,
several scans, a door closing activity, then a
data transfer to the RAM  buffer. We modeled
all of these activitics as steps in an activity
called SX 1iH-Data-Take.

5.3 COMMON STRATEGIES

There were a number of strategics that we
cmployed in the modeling process that made
modeling  the  DATA-CHASER  payload
simpler.

One strategy that we cmployed was to reduce
the number of states that state variable.s could
h av e through discretization. 1 for instance,
spacecraft orient a ion is best modeled with a
real valued 3 dimensional vector. But for
modecling purposes, we reduced the number o f
possible orientations to a discrete set of four:
solar, lunar, carth,and deep space.

Another strategy that we employed in modeling
D ATA-CHASE IR was  to scparalc  one.
component into several. 1 ‘orinstance, there
wasrcally Only onc memory buffer that was
u sc(1 forstoring several types of data, but we
modecled it as though it were three buffers: one
for science data, one for engincering data, and
onc for storing data to be downlinked. We  also
did this with power. There arcreally only two
power sources, 1 ATA power and ClHIASH IR
power, but we modeled them as though there
were d i flferent power resources for cach of the
science instruments and several of the. other
subsystems. This allowed us to track power
usage more conveniently.,

0. SYSTEM INTEGRATION

1 OCAPS will be integratedinto the 1 ind-to 1 ind
Mission Operations System (1 iHMOS) that 1S
current lybeingdeveloped for the 1DATA-
Cl1'] ASl ‘R project as a prototype for the 1 ’luto
ExpressHEMOS [ ] (], Currentl y the ] JATA-
CHASER BEHMOS consists of 7 palls:
Command & Cont rol, T ‘ault/l ivent Detection
Interaction Reaction (L/1DIR), 1XATA/NO (Data
handling), the Ground Database, the Graphical
User Interface, the software testbed, and finally
the planning and scheduling system (DCAPS).

‘The command and control system that we are
using System Command 1 anguage (SCI., also
known as Spacccraft Command I .anguage)
which integrates procedural programming wit h
a wal-time forwardchainingrule based system.
LYXCAPS interfaces with SO, through DATA/O
by sending script scheduling commands  that
arc 1o be scheduled either o n o the flight or
ground system. This is (lone by mapping P12
activities to SCI. scripts that were writlen prior



to flight. These commands are the.n Sent 1o
DATANO where it forwards thatlist to the SCI.
Compiler. once compiled they are sent to the
payload through the uplink.

1 YCAPS is also interfaced with the ground
HIEEMOS database, O2. O2 is an object oricnted
data base that will be used to store all mission
data and telemetry that is downlinked by the
payload. 1t will also storca command history.
Through DATA/NO, DCAPS  will  request
current payload status data inthe form of
sensor values in the telemetry  history. 1t will
also requestlists of ar1 commands uplinked
during a given lime interval. These are used by
DCAPS to infer command completion status as
well as to get the current state of the payload so
that a new schedule can be created.

During mission operations, approximaltely
cvery 4hours or so, DCAPS will be asked by
an operator 10 gencrate script scheduling
commands and rule activations for the. next 6
hours according to its schedule. Once this listis
finished, it 1Is
Operations staff on duty. If judged to be
cwrc.et, scheduled scripts commands will be
sent to DATA/IO during the next available
uplink window.

If during that 6 hour period there is a Major
change inthe NA SA activitics, DCAPS will
ask It the. users wantto update. the scheduled
scripts on-board. Duc 1o the fact that SCI.
currently has no scheduled script  instance
identification, this willinvolve (Ic.scheduling
ALl remaining scripts in the queue and then
rescheduling them. This is fine if the user did
not schedule any scripts independently o f
DCAPS. If he did, and DCAPS reschedules its
list, the user’s scheduled commands will be
10S1. If the user accepts it, DCAPS will
generate aupdated list, ask the users to verify
it, and then deschedule rest of the 01(1 list and
schedule the new list.

7. SUMMARY AND RELATED WORK

Iterative algorithms have been applicd to a wide
range of computer science problems such as
traveling salesman [8] as well as Artificial
Intelligence Planning [2,6,1 1,1 3]. lerative
repair algorithms have also been used for a
number  of  scheduling  Systems. The

reviewed by the Mission

GERRY/G PSS system [14] uses iterative
repair with a  global evaluation function and
stmulated anncaling to schedule spat.c shuttle
ground processing activities. The Operations
Mission  Planner (OMP) [1] system used
iterative repair in combination with a historical
model of the scheduler actions  (called
chronologics) to avoid cycling and getting
caughtinlocal minima. Work by Johnston and
Minton [7] shows 110W the min-conflicts
heuristic can be used not only for scheduling
butfor a wide range of constraint satisfaction
problems. The 01'1s system [12] can also be
performin g iterat ive repair, However, OPIS is
more informed in the application of its repair
methods in that itapplics a set of analysis
mecasures to classify the bottlencck before
sclecting a repair method,

In summary, DCAPS represents a - significant
advance from sceveral perspectives. First, from
a mission opcrations perspective, DCAPS is
important in that it significantly reduces the
an wount of effort and knowledge required 1o

generale  comimand  sequences  to  achieve
mission operations goals.  Sccond, from the
standpoint of Arttificial Intelligence

applications, DCAPS represents a sig nificant
application o f  planning and  scheduling
technology to the complex, reat-world problem
of spacccraft commanding.  Third, from the
standpoint of Artificial Intelligence Research,
1 YCAPS mixed initiative approach to initial
schedule  generation,  iterative  repair,  and
schedule  optimization  represents  a  novel
approach tO solving complex planning and
scheduling problems.
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